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SUMMARY

This contribution proposes a methodology for the numerical analysis and for the improvement of the
design of free-form membrane structures subjected to flow-induced effects. Typical applications in such
context are tents exposed to wind. Different physical factors connected to thin and flexible structures,
highly turbulent air flows, as well as their interaction have to be taken into account. This necessitates
the appropriate combination of different numerical disciplines which is done in the simulation of fluid–
structure interaction. The over-all complexity of the problem favours a modular and flexible software
environment with a partitioned coupling strategy. Within such an environment, the solution of each
physical and algorithmic field is applicable with the most suited method. In the proposed framework,
the structural field is solved with the in-house finite element program CARAT, which uses several finite
element types and advanced solution strategies for form finding, nonlinear, and dynamical problems. The
fluid field is solved with the CFD software package CFX-5. The interaction between both physical fields
is realized by the exchange of boundary conditions. Beyond the mere exchange of data, the utilization of
stabilized as well as efficient coupling strategies is mandatory. This contribution illuminates the scope of
numerical simulation theory and presents implementations followed by illustrative examples. Copyright
q 2007 John Wiley & Sons, Ltd.
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1. INTRODUCTION

1.1. Motivation

Membranes are extremely light and slender constructions because of the optimal use of material by
a constant stress state over the thickness. Typically, the resulting shape is a free-form membrane
which cannot be described analytically [1]. In the case of structures subjected to loads from
a surrounding fluid, increasing lightness and slenderness causes a higher susceptibility to flow-
induced deformations and vibrations. Examples of applications from civil engineering are wind
effects on thin shell and membrane structures.

Wind effects can define decisive design loads and therefore require in-depth analysis. Such an
analysis is very challenging in the cases of interaction between structure and wind [2]. In civil
engineering, these interactions occur on constructions such as towers, high-rise buildings, bridges,
cable and membrane roofs, etc.

The standard procedure in structural engineering is to reduce the complex problem of structures
subjected to wind to simpler models by finding appropriate assumptions. However, this approach
involves the risk of neglecting effects which result from the strong coupling of the two different
physical fields. Regarding light-weight structures, the analysis of interdependencies between struc-
ture and wind is of great importance.

For such an analysis, the application of numerical simulations for aeroelastic effects is a promis-
ing complement to and enhancement of experimental approaches. The simulation of phenomena
of aeroelasticity necessitates the appropriate combination of different numerical disciplines which
is done with a fluid–structure interaction (FSI) method [3].

1.2. Approach

The development of methods for FSI computations with light structures is a topic of ongoing
research. Generally, two different types of approaches for the numerical simulation of FSI exist:
monolithic [4–8] and partitioned strategies [9–13].

In the special case of light-weight structures subjected to wind, the following requirements are
identified:

• Adequate solution of highly turbulent flows and modelling of fluid boundary conditions to
represent the characteristics of physical wind.

• Treatment of moving boundaries in the fluid solver.
• Correct treatment of geometric nonlinearities in stationary and transient structural analysis.
• Integration of form finding to determine the proper initial geometry in the case of membrane
structures due to strong coherence between shape and load carrying behaviour.

• Accurate transfer of coupling quantities, especially in the case of non-matching grids.
• Respect of strong coherences between the physical fields by stabilized coupling schemes.

Different FSI strategies are suited to address these requirements. The authors choose a partitioned
approach as the most convenient for this problem type [13]. The choice is motivated by the
possibility to solve all involved physical fields by specialized, adapted, and tested single-field
solvers. The need for elaborate revising of existing codes towards multiphysics is evaded. The
realization of physical coupling is handled with the exchange of boundary conditions [14–17]
using stabilized and efficient coupling strategies. In the current approach, the form finding and
structural analysis parts are solved utilizing the research code CARAT. The fluid part is solved
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Figure 1. Software environment and workflow of a coupled simulation.

by the general purpose computational fluid dynamics code CFX-5 of Ansys Inc. [18]. For the
exchange of boundary conditions, the library MpCCI [19] is used.

Figure 1 provides a detailed view of the software environment and procedure of a coupled
simulation.

2. FLUID PART

The viscous fluid flow is described by the governing Navier–Stokes equations which state the
conservation of mass (Equation (1)) and momentum (Equation (2)):
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with Uj as the velocity component in the j-direction, xi as the Cartesian coordinate in the
i-direction, P as the pressure, �eff = � + � t as the effective viscosity, consisting of the dynamic
viscosity � and the turbulent viscosity � t. � represents the density of the fluid.

In the scope of this work, the finite volume approach is used to solve the Navier–Stokes
equations for incompressible fluids. Equations of mass conservation and momentum conservation
are applied to control volumes whose boundaries move with time. Equations (1) and (2) can be
expressed in integral form and by considering the grid velocity Ug,i and the incompressible fluid
state simplified to Equations (3) and (4). This is known as the arbitrary Lagrangian Eulerian (ALE)
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formulation [20]: ∫
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In the sequel, the transient term in Equation (4) is approximated as

�
d
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∫
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�(tn+1) − 4�(tn) + �(tn−1)

2�t
(5)

where �t = tn+1 − tn is the time step size and �(tn) (�(tn−1)) represents the solution field at
the previous time step tn (the time step before the previous time step tn−1). This specifies a
second-order backward-Euler scheme which requires an iterative solution method, is implicit and
therefore, does not create any time step limitation.

In the present work, CFD calculations are performed by the commercial computational fluid
dynamics package CFX-5 [18]. CFX-5 solves the 3D Navier–Stokes equations on structured and
unstructured grids for compressible and incompressible flows. For the simulation of turbulent
flows several advanced turbulence models are available, including Reynolds-averaged Navier–
Stokes models (RANS), large Eddy simulations (LES), and detached Eddy simulations (DES). For
the following examples, the shear-stress-transport (SST) model was applied [21]. An advanced
multigrid solver capable of parallelization is applied for efficient computing.

By applying the above-mentioned ALE approach, CFX-5 offers the possibility of moving and
deforming grids such as they are necessary for the deformation of a FSI interface during a coupled
simulation [18, 22]. The adaptation of the CFD grid to the updated boundary conditions is performed
by solving a diffusion problem. This resembles a special case of the mesh moving model proposed
in the papers [23, 24]:

∇(KMesh∇x) = 0

with x |�b = xb for deformed surfaces

and x |�0 = 0 for undeformed surfaces

(6)

with x as the displacement of the CFD mesh, KMesh as the mesh stiffness and ∇ as the gradient
operator. In order to prevent self-penetration of the finite volume elements in the adapted CFD
computation grid, it has been proved useful to increase the ‘Mesh Stiffness’ of especially small
finite volume cells by setting parameter KMesh to:

KMesh =
(

1

VFVE

)m

(7)

where VFVE is the volume of a specific finite volume cell and m a natural number. For numbers
m>3, depending on the volume of the smallest finite volume cell and the computational precision,
floating point exceptions are likely to occur. However, increasing the ‘mesh stiffness’ depending
on the volume of the finite volume cells does not diminish the susceptibility of the finite volume
cells towards distortion.
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3. STRUCTURE PART

The structural problem is characterized by the governing equations for an elastic body with large
deformations (and the corresponding boundary and initial conditions): dynamic equilibrium (8),
kinematics (9), and material law (10). If only stationary problems are considered, the acceleration
vector d̈ disappears and Equation (8) reduces to the static equilibrium condition. Cauchy’s first
equation of motion in local form for each point X of the reference configuration �S0 and all times
t states as

�S0d̈=∇ · (FS) + �S0B (8)

where �S0 is the density in the undeformed configuration, F the deformation gradient, S the second
Piola–Kirchhoff stress tensor (PK2) and B the reference body force. The Green–Lagrange strain
tensor is computed by

E= 1
2 (F

TF − I) (9)

and the linear relation between stress and strain is defined with the help of the elasticity tensor C

S=C : E, C= �I ⊗ I + 2�I (10)

which represents the St. Venant–Kirchhoff material law for isotropic materials which is used
within this contribution. The elastic material behaviour of isotropic solids is fully described by
two material constants: either in terms of Young’s modulus E and Poisson’s ratio � or the Lamé
constants � and �:

� = �E

(1 + �)(1 − 2�)
, � =G = E

2(1 + �)
(11)

This results in the following stress–strain relation:

S= � tr(E) I + 2�E (12)

The geometry of the membrane is described by two surface parameters �1 and �2 and quantities
in the undeformed configuration are designated by upper-case and in the deformed configurations
by lower-case letters, respectively. The curvilinear base vectors are defined by

g� = x,� = �x
��� as well as G� =X,� = �X

��� (13)

The deformation of a point of the membrane surface depends on the difference of its locations in
space:

d(�1, �2, t) = x(�1, �2, t) − X(�1, �2) (14)

These governing equations of the membrane dynamics are solved by the finite element method.
For this purpose, the Lagrangian description is used, i.e. the nodes of the corresponding mesh are
fixed to the material points. By using the isoparametric approach, the nodal positions (X̄i and x̄i )
and the three displacements (d̄i ) per node are interpolated by the same shape functions. This leads
to the semi-discrete equations of motion

M ¨̄d�[+D ˙̄d�] + rint(d̄�) = rext �(t) (15)
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where M is the mass matrix, D the damping matrix representing the structural damping (if
considered in the simulation), rint the vector of internal forces which leads via linearization
to the tangential stiffness matrix and rext the vector of external loads (which are assumed to be
deformation-independent) acting on the structure.

This nonlinear time-dependent problem with properly defined boundary and initial conditions
is solved by a time integration algorithm. In the presented example, the (implicit) generalized-�
method [25] was used because of its advantageous properties: with a certain choice of parameters,
the procedure is second-order accurate and the user has full control of the numerical dissipation
of the spurious high frequencies by minimizing errors in the lower modes of interest.

In the proposed partitioned approach the fluid–structure coupling only affects the right-hand
side of (15) neglecting the obvious displacement dependence of the fluid load which would lead to
additional contributions during linearization [26]. This is due to the fact that the classic follower-
force formulation would not be able to adequately represent the physical processes in the fluid
field. Hence, the interaction of the physical fields is realized by appropriate coupling algorithms.

The structures under consideration are described by membrane theory, which is based on the
assumption that the bending and transverse shear effects disappear. Furthermore, the negligibly
small thickness h is assumed to be constant during deformation. The latter has an important impact
on the formulation of the coupling interface, i.e. the fluid solver must be able to deal with infinitely
thin bodies.

Due to the inherent coupling of stress state and membrane shape, the geometry of the undeformed,
but already stressed, structure must be determined in a separate analysis. This is, naturally, the
first step for a computation concerning membrane structures (see Figure 1). The initial shape for
the analysis of a membrane interacting with a surrounding fluid is defined by the equilibrium of
surface stresses and edge cable forces, found as the result of a form finding computation [27]. The
need for special form finding procedures results from the singularity of the inverse problem of
finding the corresponding shape to a given stress distribution. This difficulty is overcome by the
updated reference strategy [28], a regularization by a homotopy mapping which is implemented
in CARAT.

After the initial shape is found, further analysis respecting wind or snow loads can be performed.
For the coupled computation, naturally, this initial shape defines the FSI interface. However, if
a certain shape exhibits problematic behaviour under wind action the pre-stress distribution must
be modified so that the improved shape prevents flutter. This gives the perspective of a sequential
application of form finding and FSI computation to find an ideal initial shape, which is least
susceptible to wind, and the according pre-stress distribution. Such a sequential analysis can be
realized by using the software environment proposed in this paper.

4. FLUID–STRUCTURE COUPLING

4.1. Coupling schemes for partitioned FSI analysis

Several different strategies can be used to solve FSI problems. In a so-called monolithical approach,
all physical fields are solved in one single numerical model. Due to the complexity of the numerical
simulation which is necessary to address the problems of interest, here a partitioned solution scheme
is chosen. In a partitioned FSI simulation, the fluid and the structure simulation work together in a
staggered algorithm. They exchange deformations and stresses as respective boundary conditions
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Figure 2. Explicit coupling scheme.

on the common interface. Here, the interface is the surface of the structure wetted by the fluid. The
exchange of the boundary conditions has to fulfill requirements for the kinematic and dynamic
continuity at the coupling interface [29, 30]. The main advantage of the approach is the fact that
specialized and well-tested simulation codes for each physical field can be brought together to
solve the coupled problem.

Stationary and time-dependent (transient) simulations are possible, whereas the first can be seen
as a special case of the latter, only involving one time step. Depending on the physical problem
and the computational resources, different coupling schemes are used. They result in different
stabilities and accuracies of the solution of the coupled problem.

With a simple once-per-time step exchange of coupling quantities, a sequentially staggered or
explicit coupling scheme is realized (see Figure 2). This explicit coupling scheme is very cheap
with respect to computational costs, as there is only one necessary solution of the structural and
the fluid field within one time step. However, inherent to this coupling scheme is a violation of
interface conditions, since one physical field has only information about the other field at the
beginning of the time step. Therefore, the kinematic continuity is, in general, not fulfiled because
when computing the fluid field in time step tn+1, the fluid solver has only information about the
boundary condition (the geometry of the FSI interface) at the end of the previous time step tn ,
which generally does not correspond to the interface geometry at the end of the time step tn+1. To
reduce this discrepancy in displacements, the kinematic coupling conditions can be extrapolated
by a predictor d�P n+1 [29, 30].

As a consequence of the violation of the interface condition, the sequentially staggered algorithm
shows weak instabilities whose occurrence cannot be prevented by simply reducing the time step
size [31]. Especially in the case of FSI between incompressible flows and very light and flexible
structures, the ‘artificial added mass effect’ deteriorates the stability properties of the coupling
procedure dramatically [32]. This fictitious part of the added mass results from the violated
kinematic continuity and acts instantaneously as an erroneous load on the structure. The described
effect is even more pronounced, if the structural mass is very low, which proves the importance to
control this phenomenon in the intended applications [15, 33, 34]. Foerster and Wall [35] identify
a criterion to assess the stability of an explicit coupled simulation based on the ratio of the fluid
density to the structural density.

To ensure an algorithmically strong coupling, an iterative staggered or implicit coupling scheme
is realized through an additional inter-field iteration loop: several coupled computations are
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conducted until the coupling conditions are fulfiled within one time step and the next time level
is entered (see Figure 3). Using the implicit coupling scheme, solutions of the partitioned method
converge to solutions which are computed with a monolithical approach [36]. A downside of this
approach is the fact that implicit treatment of the coupling conditions requires highly increased
numerical effort. Therefore, additional attempts should be made to formulate efficient coupling
strategies.

However, even implicit coupling schemes are not unconditionally stable for FSI problems with
high structural deformations [31, 32]. In order to stabilize the coupled computation, under-relaxation
of coupling quantities is used:

Vi+1 =Vi + ri+1 · �Vi+1 with �Vi+1 = Ṽi+1 − Vi (16)

where V is a variable the under-relaxation is applied to, Ṽ is the non-under-relaxed variable, r is
the under-relaxation factor, and i is the number of the inter-field iteration step within one time step.
The under-relaxation technique can be applied on both boundary conditions which are exchanged
between the two simulation codes, the surface load and the displacements.

Small under-relaxation factors provide a good behaviour of the coupled simulation towards
stability for the price of a significantly higher computational effort, as more inter-field iterations
are necessary to reach a dynamic equilibrium within a time step. Therefore, a reasonable choice
for the parameter r is required as a compromise between numerical stability and efficiency. The
specification of the optimal value for the relaxation parameter is a non-trivial task due to the
nonlinearity of the problem and the strong dependency on the specific task. It is highly desirable
to determine the proper value independent of any user input and according to the current system
properties. Following the work of Mok and Wall [32], in this approach, the Aitken method for
vector equations (as proposed in [37]) is applied. It introduces only minor (and therefore negligible)
additional computational effort and provides a newly adapted value for the relaxation in each inter-
field iteration step:

�i+1 = �i + (�i − 1)
(�Vi − �Vi+1)

T · �Vi+1

|�Vi − �Vi+1|2 (17)

ri+1 = 1 − �i+1 with �1 = 0 (18)
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4.2. Realization with the proposed environment

Based on the necessity of an implicit coupling scheme for the problems of interest, this chapter
presents the discussion of the realization within the chosen software environment. The imple-
mentation of functionalities in the structural in-house FE-code CARAT are straightforward [38].
Therefore, here, the interface treatment and the necessary modifications of the fluid code are
emphasized.

4.2.1. Discretization of the FSI interface. The main benefit of using MpCCI [19] is its ability to
support different discretizations of the common interface. The possibility to transfer and interpolate
mesh-based quantities between non-matching grids on the coupling interface of the structure and
the fluid part ensures that each simulation code can work on an optimal mesh for the specific
numerical simulation method.

For an interface concerning a membrane structure, the thickness of the structure is neglected
and, accordingly, the structure is treated as an infinitesimally thin plane in both the fluid and the
structural computation. In the fluid simulation this infinite thin structure possesses two interface
surfaces, one on each side.

4.2.2. CFX. In this approach, CFX 5.7 of Ansys Inc., a commercial CFD package, is used to
solve the fluid field [18]. When work is carried out with a commercial code like CFX, certain
restrictions due to customization of the solution algorithm have to be taken into account.

In order to realize a coupling approach which satisfies the necessities identified in the previous
subsection, the coupling algorithm between the fluid and the structural sides is realized as presented
in Figure 4: the fluid and the structural simulation work together in a staggered algorithm, explicit
and implicit coupling schemes are possible.
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Figure 4. Flow chart of the coupling algorithm.
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Figure 5. Extension of the CFX solution scheme for implicit FSI coupling.

Two main loops can be identified: the implicit inter-field iteration loop and the time step loop.
The inter-field iteration loop is necessary to realize the implicit coupling scheme. This loop realizes
an inter-field iteration by multiple exchanges of the boundary conditions on the interface which
leads to a dynamic equilibrium of the coupled solution within one time step. After equilibrium
within a time step is reached, the algorithm proceeds within the time step loop. Explicit coupling
is realized by ignoring the inter-field iteration loop and exchanging the boundary conditions only
once every time step.

In CFX, the deformation of boundaries can be taken into account using the ALE formulation
[18]. With the additional possibility to exchange boundary conditions at certain points in the
solution algorithm, a simple explicit coupling scheme can be realized.

Realizing implicit coupling within the given solution algorithm is more sophisticated and non-
trivial. In most implicit solution schemes, it is the case that if there is no convergence within
the coupled solution after one inter-field iteration, the solution in the fluid field is reset to the
one at the end of the previous time step and the time step is repeated with updated boundary
conditions received from the structural code. Therefore, the fluid simulation code has to support
‘time staggering.’

Here, a different implementation of the implicit coupling scheme was chosen (Figure 5). The
basic idea is that the solution algorithm should be modified as little as possible by the additional
functionalities required to perform an implicit-coupled FSI analysis. This is realized by modifying
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the coefficient iteration loop: until the solution within the coefficient iteration loop is converged, the
solution algorithm remains unchanged. Once the convergence criterion for the solution of
the coefficient loop iteration is satisfied, the computed interface loads are sent to the structural
code. Additionally, the simulation code receives notification, if the convergence for the coupled
solution is reached. If not, the CFD mesh is updated with the new interface geometry and the
computation continues within the coefficient iteration loop. Once convergence for the coupled
solution is reached, the simulation code proceeds in time.

The state of convergence of the coupled computation for one time step is judged upon the
interface geometry change since the last inter-field iteration step. This convergence check for the
coupled solution is done in the structural code. On the fluid side, the convergence status has only
to be received.

The advantage of this approach is that the complete FSI inter-field iteration loop is implemented
within the structure of the coefficient loop. Considering all additional FSI-specific steps of the
inter-field iteration loop as functions which can be skipped, if the convergence criterion within the
coefficient loop is not fulfiled, the coefficient loop and the inter-field iteration loop are identical.
Therefore, the solution algorithm of the fluid solver ‘does not know or need to know’ of the
existence of an additional inter-field iteration loop. From the point of view of the solver, only
additional cycles in the coefficient iteration loop are performed. This extension of the solution
scheme is applicable for FSI implementations in CFD codes, which do not support ‘time step
repetition.’

5. NUMERICAL EXAMPLES

5.1. Hanging roof

The following example presents a hanging membrane roof under wind loading. The set-up is 3D.
For the sake of computational efficiency, the depth of the channel is limited and appropriate fluid
boundary conditions are applied to reduce the problem to quasi-2D.

The parabolic inflow velocity profile has a maximum velocity of 26m/s. Figure 6 shows the
simulation set-up and a detail of the roof including the CFD grid: the structure consists of a
membrane roof with a span of 10m pre-stressed by its own weight and bordered by rigid walls.
The membrane material is a polyester fabric with PVC coating of type I and a thickness of 1mm.
The structural analysis is performed with four-node membrane elements using the generalized-�
method to solve the dynamic problem. In the fluid analysis, a SST-turbulence model with wall
functions is applied and the fluid properties are those of air at 25◦C.

With this set-up, the simulation comprises interaction between incompressible fluid and flexible,
extremely light structure. As explained in Section 4, for the analysis by partitioned methods this
set-up formulates a sophisticated problem. In order to solve it, the choice of an appropriate coupling
scheme and parameters have to be analysed.

Applying explicit coupling results in unstable behaviour for all selected time step sizes in
the range from 0.01 to 0.1 s. As the time step is decreased, the instabilities occur
sooner.

For implicit, iterative coupling schemes, a time step size of 0.1 s proved to be a good compromise
between a sufficient time resolution and a reasonable computational effort. Hence, it will be used
in the following computations. The under-relaxation technique presented in Chapter 4 is used
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Figure 6. Set-up for the simulation of a hanging roof under wind loading.

for stabilization of the coupled solution. It is applied to the transferred loads or the transferred
displacements. Without stabilization (under-relaxation factor rconst = 1.0), the implicitly coupled
analysis shows no convergence within a time step. As the under-relaxation factor is lowered, the
stability of the coupled computation improves. Under-relaxation of displacements appears to be
more effective than that of loads.

The upper part of Figure 7 provides a comparison for selected calculations with implicit coupling
schemes using fixed under-relaxation factors or adaptive under-relaxation by Aitken’s Method. The
lower part of Figure 7 shows the time—‘number of inter-field iterations’—curve for adaptive Aitken
stabilization. Especially in the zoomed view, iterations of the coupling algorithms are visible, as the
solution converges towards equilibrium within each time step. Once a stable simulation behaviour
is achieved, the stabilization technique itself has little influence on the results.

However, stability has to be paid for by computational effort. Considering the accumulated
number of inter-field iterations gives an approximation of the computational effort for differ-
ent under-relaxation factors in implicit partitioned computations. On this basis, Table I gives a
comparison of the relative computational efforts for different under-relaxation factors. With respect
to the relative effort, the superiority of the adaptive stabilization is obvious.

Concerning the mechanics of the problem, the simulation gives the expected upward movement,
‘snap-through,’ and following oscillation of the membrane roof. Figure 8 shows deformation and
flow around the roof after the ‘snap-through.’

5.2. 3D four-point tent structure subjected to wind

The experiences of the preceding example shall now be extended to a more complex geometry
under simplified wind loading. The inflow profile is logarithmic according to the requirements of
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Figure 7. Implicit-coupling procedures using under-relaxation for stabilization: iterations and results.

Table I. Numerical effort for different under-relaxation factors.

Under-relaxation factor Relative numerical effort (%)

rconst., load = 0.1 100
rconst., load = 0.2 62
rconst., disp = 0.2 64
rconst., disp = 0.5 36
rAitken, load 28
rAitken, disp 27

German building code DIN 1055-2. The four-point tent structure resembles a saddle surface of
a membrane with a uniform pre-stress of 2.5 kN/m stabilized by four cables at the edges pre-
stressed with 50 kN. It is supported by two masts constructed from steel tubes with a diameter
of 88.9mm and a thickness of 6mm. The bracing consists of two sets of two guy cables with a
diameter of 13.8mm, pre-stressed with a force of 41 kN. The membrane material is a polyester
fabric with PVC coating of type I and a thickness of 1mm. The edge cables are spiral strands with
a diameter of 16mm. Dimensions are given in Figure 9.

The set-up of the analysis follows the flow chart given in Figure 1, including the form finding
procedure to acquire the proper equilibrium configuration, which defines the initial geometry for the
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Figure 8. Deformation of membrane roof and velocity vectors.

multiphysics computation. In the fluid domain only the membrane itself is modelled, the influence
of cables and masts on the flow field are neglected. For the form finding and the structural analysis,
masts and cables are fully taken into account. The interface is treated as a two-sided infinitely thin
surface in both the structure and the flow analysis.

The simulation set-up is completely 3D using a tetrahedral mesh for the CFX simulation with
refinement by prism layers nearby the membrane and the bottom. A SST-turbulence model with
appropriate wall functions is applied. In the structural analysis, three-node membrane elements are
used for nonlinear analysis. The fluid is air at 25◦C.

The dynamic behaviour of the coupled system was analysed in a transient FSI simulation for
a flow in y-direction (Figure 10).With regard to the low structural mass and the incompressible
fluid modelling, which in turn is due to the low flow speed of wind, the coupled computation was
carried out in a fully implicit manner. The need for this stabilization in the partitioned solution
of FSI between light-weight structures and incompressible fluid flows was already described in
Section 4 and demonstrated in Section 5.1. To enhance the convergence behaviour in the inter-
field coupling loops, Aitken’s method was applied. The time integration used on the fluid side
was a second-order backward-Euler scheme. On the structural side, the generalized-� method was
applied.

The fluid simulation was started from the result of a steady-state solution of flow around
the undeformed membrane at 20m/s. Therefore, the unloaded and undeformed membrane first
needs to find its equilibrium state for this inflow velocity. As a result of the stationary com-
putation, an upward deformation occurs in the front part, while the rear part deforms
downwards.
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Figure 9. Geometry and dimension of the four-point tent structure.

Figure 10. Flow around the membrane.

In the following, the maximum wind speed was varied between 10 and 30m/s in a gust-
like behavior. Figure 11 shows the maximum inflow velocity. The resulting membrane
motion is depicted in Figure 12 for different time steps. The structural deformation follows the
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Figure 12. Deformation of four-point tent at different times.

variation of the wind speed without delay due to the membrane’s pre-stress and its small mass,
which indicates the small influence of the mass of the membrane on the inertia of the complete
system.

These results provide a first assessment of the structure’s behaviour under wind loading,
both in magnitude of the deformation and in the occurring frequencies. Thereby, a possibil-
ity arises to quantify the effects, which are expected due to the geometry and the problem
setting.
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6. CONCLUSION

In this paper, a modular software environment using the methods of FSI for the simulation of wind
effects on light-weight structures, like tents or membrane roofs, was presented.

To take into account all demands arising from the physical problem, a partitioned approach
using highly developed codes for the single-field computations, namely CARAT and CFX-5, is
applied.

Strongly and weakly coupled iteration schemes were described. It is pointed out that in the case
of flexible, nearly mass-less structures interacting with incompressible fluids, implicit coupling
schemes are necessary. For the stabilization of implicit coupling schemes, an adaptive under-
relaxation technique is applied. This coupling algorithm is realized within the chosen software
environment, tailored to the specific needs of the considered problem. Special emphasis was put
on the realization of an implicit coupling scheme using the commercial software package CFX-5.

The application of the proposed software environment and the frame algorithm is presented in two
examples. The first example concentrates on a quasi-2D transient numerical experiment: a hanging
roof structure subjected to wind flow. Detailed analyses with respect to different coupling schemes
were performed. It showed necessity for and effects of stabilization. Using the data from the first
example, a problem of engineering interest was computed: the stabilized coupling approach was
extended to a transient analysis of a wind loaded tent structure, of which the geometrical definition
was derived by the stabilized form finding procedure (URS).

Considering the requirements towards the occurring turbulence and the boundary conditions,
it is obvious that further improvements are necessary in order to precisely approach the effects
of wind loads. However, these first results provide experiences about the difficulties of coupled
computations in the field of wind engineering and ideas how to overcome them.
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